Creative Problem Solving and the Future of HTM

Published on May 9, 2016

http://www.dreamstime.com/stock-photos-problem-solving-series-image1053963

This article will appear with 24×7’s June 2016 anniversary coverage.

 It’s been more than 30 years since my first exposure to clinical engineering. Many things have changed, but some key principles have stayed the same.

I became the director of Environmental Services at a 160-bed Level 3 trauma hospital in central Minnesota in 1985. Given my construction background, this healthcare environment was brand-new to me, including managing Clinical Engineering. Fortunately, I met Jon Hilleren, CBET, who immediately impressed and relieved me.

I was impressed because not only were Jon’s technical skills sound, but he was a visionary for the time. Shortly after I started, he shared an idea to begin reaching out and supporting smaller hospitals that did not have skilled clinical engineers to perform scheduled preventive maintenance (PM) or repairs. Together, we grew the program to include a clinical engineer who would travel on a circuit in a van to help these smaller organizations. I was relieved when Jon assured me I would never have to be concerned about the medical equipment missing a scheduled PM, and that all our medical equipment would be reliable and safe for patient care.

What Jon had was the ability to be a creative thinker and problem solver—the two key attributes of a great healthcare technology management (HTM) professional. Despite all the changes to clinical engineering and healthcare technology, time and again these two traits make the difference.

Take my next significant encounter with healthcare technology. I worked with the American Society for Healthcare Engineering (ASHE) as the director of codes and compliance in the late 1990s. This was just as digital high-definition (HD) broadcasting was being rolled out. I recall one Saturday afternoon when a telemetry unit was knocked offline. When the clinical engineer arrived to troubleshoot, he first rebooted the equipment, which immediately started up. The next day the telemetry unit went down a second time. Only, when the clinical engineer arrived and attempted to reset the system, it did not respond although the equipment was fine.

Thinking outside the box, he recalled that a TV manufacturer was planning an HD demonstration across the street at a local mall. A bit of investigating revealed that the TV was broadcasting on the same frequency as the hospital’s telemetry unit, causing the telemetry to fail. (This discovery later led to an agreement with the Federal Communications Commission to protect hospital-based telemetry, managed by ASHE.)

There was also the instance a few years back when endoscopes were first being identified as contributing to healthcare-associated infections. I reached out to the HTM community, asking it to begin adding scopes to its equipment inventory. My intent was not so much to track endoscopes, but rather to motivate the HTM community to get involved by going to the endoscope processing room and reviewing the sterilization procedures. The skills HTM brought to these rooms made a real impact on these processes.

Creative thinking and problem solving were integral to these examples. Fortunately, those same character traits are evident today wherever I speak or meet with HTM professionals—and they need to be now more than ever.

Moving from the bench to patient care delivery, today’s clinical engineer must develop the relationship between IT and patient care. Our industry is about more than just performing scheduled maintenance and repairs on an IV pump. Now more than ever, it requires systems thinking to understand how an IV device is part of a medication-delivery system that needs to correctly identify the patient, communicate with the pharmacy to verify that the drug is appropriate and won’t interact with other medications, is prescribed at the right dose, and will be delivered at the correct dose rate. This requires HTM to understand all the systems involved behind the scenes, train and develop the users, ensure the equipment can be supported by the organization’s intranet, and provide council to leadership as new equipment and technologies are
being considered
.

This same initiative must be evident when new equipment is brought into the organization. Often it is not the IT department that will be troubleshooting the installation, but the HTM team. IT may be able to program and prepare the network, but ensuring that the system’s clinical requirements are met often falls to HTM, especially when it comes time to verify that a system actually delivers the intended outcomes. HTM must be able to work with IT to ensure that the network can support the medical equipment, and that the medical equipment is readily available and reliable.

Over the past 30 years, including since my return to The Joint Commission in 2005, I have become convinced that the resources available from the Association for the Advancement of Medical Instrumentation, the American College of Clinical Engineering, and 24×7 continue to strengthen the HTM industry. Certification opportunities confirm the skills and dedication of its members to the field. New higher education programs are available, equipping the next generation of technicians with the skills to continue to protect patients.

Today’s HTM professionals must be competent, creative problem solvers. They must be an established resource to all clinical users of medical equipment. They must be a stable, reliable team that manages today’s healthcare technology—just as they were when I first encountered them more than three decades ago.

George Mills, MBA, FASHE, CEM, CHFM, CHSP, is director, Department of Engineering, The Joint Commission.

Source: 24×7 Magazine

The NEMA Publishes X-ray Equipment Standard

Published on June 13, 2016

The National Electrical Manufacturers Association (NEMA) has published NEMA XR 31-2016: Standard Attributes on X-ray Equipment for Interventional Procedures—a standard developed by its Medical Imaging and Technology Alliance (MITA) division. This standard,  which uses MITA Smart Dose Interventional technology, offers healthcare providers tangible ways to manage patient radiation dose delivery while still enabling x-ray systems to provide sufficient image quality needed by physicians.

NEMA XR 31-2016 describes eight features that should be taken into consideration when performing risk management evaluations on existing stationary x-ray interventional equipment. They include: digital x-ray imaging device classification, dosimetric indication, added filters, range of air kerma rates in fluoroscopy, last-image-hold, virtual collimation, stored fluoroscopy, and variable-pulsed fluoroscopy.

“MITA is dedicated to developing standards for medical imaging equipment that enhances patient safety by providing dose reduction, mitigation, and management features,” says Megan Hayes, MITA’s director of regulatory and standards strategy. “The MITA Smart Dose Interventional standard identifies state-of-the-art attributes that will help manage patient dose while ensuring high image quality for the physician.”

NEMA XR 31-2016 may be downloaded at no cost on NEMA’s Website.

Source: 24×7 Magazine

AAMI Spotlights Influence of Healthcare Technology on Patient Safety

Posted March 15, 2016

“On April 17, 2003, I died.”

That year, Matt Whitman, a Michigan state trooper, now retired, was hit by a drunk driver and had to undergo neck surgery. The operation went smoothly, but in the recovery room, a new danger emerged. He was placed on a morphine pump for the pain, but without any electronic monitoring. That night, he stopped breathing—a case of respiratory failure induced by the opioids he was taking. Were it not for a nurse passing by his room to look for an item for another patient, Whitman believes he would be dead.

“I heard you take your last breath,” Whitman recalled the nurse telling him. The nurse called a Code Blue, and a team of doctors resuscitated Whitman. When he came to, a priest was holding his hand.

Unfortunately, not everyone is as lucky as Whitman, and experiences like his are all too common.

According to the National Patient Safety Foundation, one in 10 patients will develop a healthcare-acquired condition during hospitalization. Overall, medical error has been estimated to cause 44,000 to 98,000 deaths in hospitals each year, with recent research suggesting the number could be as high as 440,000 deaths.

Patient safety has become a major public health issue, and this week is dedicated to increasing awareness among healthcare professionals and the public. In recognition of Patient Safety Awareness Week, AAMI is shining a light on the crucial and growing role that safe and effective healthcare technology plays in patient outcomes.

“Advances in healthcare technology are helping patients in ways we could not have imagined not too long ago. Many hospitals are saving lives by integrating technologies such as continuous electronic monitoring of patients on opioids and smart infusion pumps as tools to support the work of clinicians,” said Marilyn Neder Flack, senior vice president of patient safety initiatives at AAMI and executive director of the AAMI Foundation. “At the same time, it can be a challenge to ensure that healthcare technology is developed and used in the best way possible—always with an eye on clinical workflow and patient safety. The AAMI Foundation is committed to tackling these complex issues through our patient safety initiatives. Today, under the Foundation umbrella, more than 100 committed individuals are working toward achieving the goal that no patient will be harmed by healthcare technology.”

The AAMI Foundation’s initiatives are focused on infusion systems, clinical alarms, continuous monitoring of patients on opioids, and home health infusions.

All of AAMI functions with an appreciation for the ultimate goal of advancing patient safety, whether in the form of training webinars for industry professionals, certification options for technicians and specialists, or developing standards for medical devices and healthcare technology.

AAMI President Mary Logan stressed that the association’s mission is to provide global leadership to support the healthcare community in the development, management, and use of safe and effective healthcare technology.

“Patient safety is at the heart of everything that we do,” Logan said. “By developing standards, AAMI works to ensure that all medical devices are designed and manufactured with quality, safety, and usability in mind. By educating and certifying the healthcare technology management professionals who implement and service these devices, we help ensure that patients receive the highest quality care. And by bringing all stakeholders to the table when we discuss mutual challenges, we support the goal of finding lasting and comprehensive solutions.”

AAMI has a host of resources focusing on specific aspects of healthcare technology. All of these resources can be found at www.aami.org.

The Smartphone Is a Smart Tool for Biomeds

Steven J. Yelton

April 11, 2016

As a college professor as well as a senior consultant for a clinical engineering department of a hospital, I have the privilege of working with people of all age groups. Most, if not all, have a smartphone. I have been very impressed at what a great tool it has been.

Before I go any farther, I have to say that on my classroom and laboratory, we have ground rules for use of smartphones, tablets, laptops, or similar devices. During a test, students definitely cannot use them.

During lectures, I basically ban the use of smartphones as well. I explain to my students that the use of such devices during a lecture is disruptive because as soon as someone starts looking at a screen, the students behind that person are straining to see what is on the screen. The first time that students see this happen with someone else in class, they are believers! The fact that students cannot use their smartphones during lectures hopefully forces them to develop their listening skills. There are few things worse than trying to carry on a conversation with or present a lecture to people who are also “on” their phone. They aren’t multitasking; they are rude.

If their phone rings, beeps, chirps, or preferably vibrates during a lecture, students are expected to quietly leave the room and take care of the situation. Most of my students have families, jobs, and other commitments in which an emergency might arise, and it’s important to recognize that fact. They learn that they should be courteous to the other students and professors.

That being said, I am a big fan of this technology when used with good manners.

I cannot tell you how many times students have used their smartphones to text a friend or colleague for information to help solve a lab problem. It could be something as simple as finding out the factory default password setting for a patient monitor. Smartphones have a camera, so students can take photos of things such as serial numbers, displays, or connections. They can email this information to others when they need help figuring out a particular challenge. They often include these photos in their lab reports. Such actions are not cheating; they represent a good use of students’ time. Once they figure out a problem, they will know the answer from then on. I don’t think that taking hours looking for the solution is any more valuable than finding help faster. (By the way, getting such help isn’t allowed during tests!)

The use of a smartphone in class can be beneficial in other ways. One time, I saw students using FaceTime to get another pair of eyes on a problem. We had a device in the lab with a particularly tricky problem. The students worked on it as a group. Even with some hints from the professor, they were having difficulty. They connected with a technician from one of the student’s co-op job via FaceTime to discuss the problem. I was very impressed that they were able to very clearly define the problem, show how the device reacted to inputs, and then get advice on how to proceed. The smartphone connects the world! I later found out that technicians from developing countries communicate with others via FaceTime to help solve problems. Not long ago, it would have been impossible to get help from faraway experts so quickly.

In conclusion, we need to embrace the technology, but do so with courtesy—and remember that the person standing in front of you takes priority.

Source:  AAMIBlog

Managed facility contracts in the NHS – Trends and benefits

Given the current financial climate, many NHS Trust are looking at their facilities, assets and services with increasing concern at how they will keep their service quality with current levels of funding available. All NHS Trusts are focussed on delivering improved healthcare services whilst also looking at ways of reducing costs and improving productivity. Senior executive are seeking new ways to update facilities, assets, and services to enhance their patient services whilst minimising their costs; maximising the value delivered through their facilities, assets and services.

The worldwide facilities management outsourcing market will be $1.314 trillion in 2018. (Glenn Hodge, 2014)  Managed services (including the provision of capital equipment) form part of this growth and is estimated to grow from $107.17 billion in 2014 to $193.34 billion by 2019, at a Compound Annual Growth Rate of 12.5%. North America is expected to be the largest managed services market in terms of revenues generated, but Asia-Pacific is expected to emerge as a high-growth market. (MarketsandMarkets, 2016)

Growth is evident across all outsourcing markets, from North America and Europe to Latin America and Asia Pacific. The market is not just expanding, however; it is evolving, with growing public- and private-sector demand for managed facility solutions that are both global and integrated.  Along with this evolving market, customer expectations are broadening to include more value-added services; customers increasingly expect service providers to assume responsibility (i.e., accept risk transfer) for regulatory and labour law compliance, for example, and to take an active role in advancing the healthcare organisations strategic mission (Alexander Redlein, 2014). To this end, current service providers have to evolve from being service providers to becoming strategic partners.

Moving from traditional in-house to contracted-out facilities

Hospital executives and politicians have to respond to increased social, economic and regulatory pressures. Their decisions whether or not to outsource can have a significant impact on the productivity and organisational costs. Having modern facilities with modern equipment and Information Technology can allow greater throughput of patients, thereby impacting on revenues and costs. Within these modern facilities, NHS staff can access cutting edge healthcare technology, such as up-to-date Magnetic Resonance Imagers (MRI), with high speed connectivity enabling improvements in organisational efficiencies.

FM 1

NHS Trusts are working with companies that can partner with them to enhance the effect that technology has within their facilities, providing assets (MRI) and services (Maintenance and training) as part of the facility has a positive impact on staff morale, patient care, and budgetary control. An outsourced managed facility, such as an MRI facility can bring benefits to their core business of the Trust by increasing diagnostic capabilities. These managed facility type partnerships work best through development of strategic relationships with companies that are facility and asset management experts.

MRI

NHS Trusts are also looking to save money through simplification of procurement processes and have a target to deliver £1.5Billion on non-pay spend by the end of 2016 (NHS England, 2013). This simplification can be accelerated by working with facility management partners that have experience and scale to deliver a broad range of healthcare management services, including multi-year refreshment planning and replacement of assets within the facility. Another benefit under current Treasury rule is the ability to reclaim VAT on a managed facility contracted out service.

 FM 2

 Contracting out rule 45 for VAT recovery:

Operation of hospitals, health care establishments and health care facilities and the provision of any related services:
This heading is concerned with the provision of a fully operational managed hospital; or healthcare facility, where all services relevant to that facility ‘short of medical and nursing services’ are supplied to the NHS by the managed facility provider. It includes the ancillary provision of equipment together with the service of operating and maintaining that equipment, and it includes utilities when provided as a part of the whole package and paid for within the single unitary charge.

When assessing the level of services provided within the facility, it is important to consider the actual use of that facility and that the services provided are consistent with that usage. (Establish if there are sufficient services to facilitate the operation of a hospital, healthcare establishment or healthcare facility).

VAT is recoverable if a full package of services necessary for the operation of that hospital; healthcare facility, etc. – for example estate management, reception, porterage, cleaning, laundry, catering, security, equipment maintenance, technicians. i.e. As outlined earlier, arrangements for MRI scanners and similar medical equipment, within a facility that is supplied with staff presence of labour and expertise, remains eligible for VAT to be recovered under heading 45.

The contracted out services normally require longer-term contracts, Trusts should be looking for provider partners that are strategic thinkers and can deliver increased value through their facility assets and services. Ultimately they are looking for vested partners that are experts to guide them in getting the best out of their facilities, assets and services.

The NHS is already under tremendous pressure to save money. Contracted out services could be a way of replenishing assets at a lower cost with higher rates of efficiency and productivity.

Dr John Sandham CEng FIHEEM MIET

Source: ebme.co.uk

Cover Story: ECRI’s List of Tech Hazards

cover-cover1
Posted By: K. Richard Douglas on: April 10, 2016 In: Cover Story, Feature Slider, Magazine

By K. Richard Douglas

A January 2015 article in USA Today detailed several incidents of fatal illnesses in Seattle, Pittsburgh, and Chicago related to a superbug bacteria known as Carbapenem-resistant Enterobacteriaceae (CRE). The bacteria is of real concern to medical professionals because it resists even “last defense” antibiotics, according to the story. In each case, the investigation of the source of the deadly bacteria turned out to be a specific type of Endoscope used on a half million patients annually.

Conventional cleaning of these endoscopes proved to be insufficient to remove all bacteria. This problem leads ECRI Institute’s list of the “Top 10 Health Technology Hazards for 2016.” ECRI points out that flexible endoscopes, and duodenoscopes in particular, are constructed in such a way that makes thorough cleaning difficult. The proper reprocessing of these scopes is critical to the well-being of patients. Biologic debris must be removed prior to sterilization or disinfection. The need for this pre-cleaning step is just one area of concern identified by ECRI Institute in this year’s list.

ECRI Institute’s Health Devices Groups says that the list “identifies the potential sources of danger that we believe warrant the greatest attention for the coming year.” ECRI points out that the list does not necessarily reflect the most frequently reported problems, or those with the most severe consequences, but instead those issues demanding the most immediate attention.

Besides the concerns about flexible endoscopes, the list also includes:

  • Missed Alarms Can Have Fatal Consequences
  • Failure to Effectively Monitor Postoperative Patients for Opioid-Induced Respiratory Depression Can Lead to Brain Injury or Death
  • Inadequate Surveillance of Monitored Patients in a Telemetry Setting, May Put Patients at Risk
  • Insufficient Training of Clinicians on Operating Room Technologies Puts Patients at Increased Risk of Harm
  • Errors Arise When HIT Configurations and Facility Workflow Do Not Support Each Other
  • Unsafe Injection Practices Expose Patients to Infectious Agents
  • Gamma Camera Mechanical Failures Can Lead to Serious Injury or Death
  • Failure to Appropriately Operate Intensive Care Ventilators Can Result in Preventable Ventilator-Induced Lung Injuries
  • Misuse of USB Ports Can Cause Medical Devices to Malfunction

“Some of the most obvious resources for addressing these concerns are the hospital IT and biomed/clinical engineering departments. If the concerns and steps listed previously are going to be addressed and utilized, these two departments are going to need a good working relationship.”

The ECRI Institute considers several criteria when forming its list. Those criteria include severity, frequency, breadth, insidiousness, profile (is it publicly known) and preventability. Nominations for the list come from ECRI Institute’s own engineers, scientists, clinicians and other patient safety analysts.

These experts base part of their nominations from investigating incidents, testing medical devices, speaking with other health care professionals, observing operations, assessing hospital practices and reviewing the literature, according to ECRI.

There should be a preventable element to any item that makes it on the list. ECRI also says that the absence of a topic from a previous year should not be perceived as any indication that it is a hazard that no longer deserves attention.

Continue reading …

Two Generations, Two Unique HTM Perspectives

 

Healthcare technology management isn’t just one area of study, nor is it a single profession. The term includes hospital roles such as biomedical equipment support specialists, clinical engineers, and medical maintenance technicians. That said, we wanted to get two different perspectives on ever-widening field of HTM, and also showcase the diversity in field of engineering. Luckily we have just that with Baby Boomer Al Gresch and Millennial Alyssa Merkle.

al_alyssa

 

 

 

 

 

Alan Gresch is VP of Client Success at Mainspring Healthcare Solutions. He has over 30 years of technology management experience in multi-hospital health systems, leading both clinical engineering and corporate system logistics teams. Before Mainspring, Gresch was the Corporate Director of Clinical Engineering at Aurora Health Care. Living in Wisconsin, he’s the father of six and grandfather of 10, who owns an RV and bleeds green and gold as a season ticket holder with the Green Bay Packers.

Alyssa Merkle interned at Mainspring Healthcare Solutions, graduated from the University of Connecticut with a BS in biomedical engineering, and is currently enrolled in UConn’s clinical engineering master’s program. Merkle has also been inducted into the Biomedical Honors Society (Alpha Eta Mu Beta). Originally from New Jersey, Merkle is a New England Patriots cheerleader, and in that role tipifies the saying, never judge a book by its cover.

TWO GENERATIONS OF HTM PROFESSIONALS

How and when did you know you wanted to study biomedical engineering, what drew you to the field?

Merkle: My uncle, an electrical engineer, had always given me great advice. I sat with him one night and we just talked about my interests and what jobs I could see myself enjoying. He knew I was good at math and science so he immediately brought up engineering. Then we brought up the fact that I love helping people, and the field that emulated that trait of mine was biomedical engineering. After doing research about the field, I decided I wanted to try it in school and when I got to UConn and started learning more, I knew I had chosen the correct major. It combines the things I like doing best and it’s a field that will continue to grow, so I can continue to learn and develop with it throughout my career.

How has the HTM field changed since you first started your career, what was it like then versus now?

Gresch: Early in my career we were much more involved in the actual clinical application of technology. Fields like electrophysiology and cardiology diagnostics were in their relative infancy so in addition to doing equipment repair we spent a lot of time on the research side of things helping develop diagnostic tools and being right next to nursing staff in setting up and connecting equipment to patients. Also, my first CMMS was in the form of data cards printed from our hospital’s data center! Today there is a much greater need to manage projects and utilization of assets to keep costs at a minimum and still deliver exceptional care.

You’ve just finished your undergrad and are headed to grad school in the fall. How has your experience been so far, and what are you most looking forward to about continuing your studies?

Merkle: My experience at UConn has been amazing in terms of enjoying my major as well as appreciating all the other opportunities available at the school. Moving forward is going to be just as much fun, as I am starting a new chapter with clinical engineering. I liked the biomedical major and loved that the clinical side of biomedical engineering is even more focused on closely helping people. I was recently accepted into UConn’s master’s program for clinical engineering. The thing I am looking forward to most, is starting a new journey in a field that I can continue to learn and help people to the best of my ability.

What’s one of the biggest misconception in hospitals about HTM departments?

Gresch: A big misconception is that HTM departments are just fix-it guys. Many organizations fail to take advantage of the business benefits this group can bring to things like Capital Planning and Asset Management.

How do you explain the clinical engineering and healthcare technology management (HTM) field to your friends?

Merkle: I had a few friends in engineering fields such as biomedical, electrical, and chemical engineering. Besides that, I had a few friends in the business school, a few friends in the education program, and my best friend was in the nursing program. When I was explaining clinical engineering and HTM to them in the simplest way, I would tell them that we are the people that are the liaisons between patient safety and the device manufacturers. Of course, it is so much more and we are the people that make the hospital workflows function as efficiently as possible through database cleaning, different committee meetings, learning hospital workflow by being present in the hospitals, and implementing new plans to create a more effective and efficient environment overall.

What advice would you give to young professionals like Alyssa starting out in the HTM field?

Gresch: Reach for the stars! Learn as much as you can about the challenges facing your organization and how you can help through effective technology management and integration. In addition to developing strong relationships with nursing, get to know your finance, accounting, and IT groups and learn how you can bring value to them as well.

 

Source: Mainspring